220 kV AC substation

Outdoor AIS AC substations
High-voltage components
Stand-alone current transformers
2000/1000 A
ETS-50-06-08-D2
REVISION VIEW

<table>
<thead>
<tr>
<th>Document no.:</th>
<th>13/90592-134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>0</td>
</tr>
<tr>
<td>Author</td>
<td>BEJ</td>
</tr>
<tr>
<td>Document status/change</td>
<td>JLY, JAS, LLI, BMP, EOM, CUM, HRH, APN</td>
</tr>
<tr>
<td>Reviewer</td>
<td>JSO</td>
</tr>
<tr>
<td>Approver</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>2014-12-01</td>
</tr>
</tbody>
</table>
Table of contents

1. Introduction 4
2. Standards and regulations 4
3. Functional requirements 4
4. Technical requirements 5
 4.1 Ratio 5
 4.2 Measuring cores 5
 4.3 Relay cores 5
 4.4 Overcurrent 5
 4.5 Test 5
 4.6 High-voltage terminals 6
5. Design requirements 6
 5.1 Installation 6
 5.2 Corrosion protection 6
 5.3 Colours 6
 5.4 Earthing 6
6. Documentation 7
7. Appendices 8
 7.1 Appendix 1 High-voltage connections 8
 7.2 Appendix 2 support Interface 9
1. **Introduction**
This standard specifies the minimum requirements for stand-alone current transformers designed for outdoor substations for the 220 kV nominal voltage range.

2. **Standards and regulations**
The current transformer shall be in compliance with the following standards and regulations.

- Danish legislation
- Outdoor AIS AC substations common conditions and technical requirements for high voltage apparatus, ETS-50-00
- Other standards referred to in the above standards.

3. **Functional requirements**
Current transformers shall be hermetically sealed.

The terminal block in the terminal box shall be designed to enable short-circuit of each separate secondary winding without interrupting the secondary circuit. The terminal box shall be located at the same side as main terminal P2.
4. Technical requirements

4.1 Ratio

<table>
<thead>
<tr>
<th>Nominal voltage [kV]</th>
<th>PRIMARY CURRENT [A]</th>
<th>SECONDARY CURRENT [A]</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>2000/1000</td>
<td>1</td>
<td>Both Measuring and Relay cores</td>
</tr>
</tbody>
</table>

Current transformers shall be re-connectable on their primary side and shall upon delivery be connected for 2000/1 A.

4.2 Measuring cores

<table>
<thead>
<tr>
<th>Nominal voltage [kV]</th>
<th>NUMBER OF CORES</th>
<th>ACCURACY CL.</th>
<th>OUTPUT [VA]</th>
<th>INSTRUMENT SAFETY FACTOR FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>2</td>
<td>0.2s</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Measuring cores: Secondary winding resistance shall be ≤ 2 Ω at 20°C.

4.3 Relay cores

<table>
<thead>
<tr>
<th>Nominal voltage [kV]</th>
<th>NUMBER OF CORES</th>
<th>CLASS</th>
<th>OUTPUT [VA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>3</td>
<td>5PR30</td>
<td>30</td>
</tr>
</tbody>
</table>

Relay cores: Secondary winding resistance shall be ≤ 4 Ω at 20°C.

4.4 Overcurrent

The primary winding of the current transformer shall be able to conduct:

- 200% of rated primary current for 1 hour
- 150% of rated primary current for 40 hour

The windings shall be designed for a continuous current of 120% of the primary current.

4.5 Test

The current transformer shall be type tested in accordance with EN 60044-1 and a declaration of conformity concerning type conformity shall be available from the manufacturer. A test protocol for each current transformer shall also be available. The test protocol shall specify all test points in accordance with a routine test as described in EN 60044-1.

The fault curves for the measuring cores shall be recorded down to 5% of the rated current and, if possible, at even lower currents.
4.6 High-voltage terminals

For 220 kV high-voltage terminals, one of the following is required:

Plate terminal with 2x2, Ø14 mm holes and a 50 mm hole centre spacing.
See Appendix 1 Figure 1 A.
Material: Aluminium, aluminium alloy or silver-plated copper.

Plate terminal with 2x4, Ø14 mm holes and a 50 mm hole centre spacing.
See Appendix 1 Figure 1 B.
Material: Aluminium, aluminium alloy or silver-plated copper.

Ø30 mm tap placed centrally on the equipment.
Material: Aluminium, aluminium alloy or silver-plated copper.
See Appendix 1 Figure 2.

5. Design requirements

5.1 Installation

It shall be possible to install the current transformers on a support using the footprint specified in Appendix 2 Figure 3.

5.2 Corrosion protection

External parts shall be made of corrosion-resistant materials. Steel components shall be stainless or hot-dip galvanized. If surfaces are processed, they shall be protected in a permanent way.

5.3 Colours

All corrosion-protected surfaces that are given a paint finish shall be painted in the colour Grey RAL 7033.

5.4 Earthing

Metal cabinets shall have protective earthing.
Cabinets of insulating material shall have a common earthing terminal to which all internal separate metal parts shall be connected.

There shall be terminals for protective earthing of control cabling.
6. Documentation

The current transformer shall be accompanied by the following documentation:
Data sheets stating manufacture, type, description and drawings. This shall include:

- Measuring fault curve as a function of load and current
- Dynamic transfer characteristic (with DC component)
- Secondary resistance
- Excitation curves and material data
- Thermal limit
- Mechanical core dimensions
- Equipotential curves
- Equivalent diagram
- HF properties
- Detailed drawings
- Operating manuals
- Maintenance manuals
- Mechanical data, strength, deflection etc.
- Storage instructions
- Instructions for disposal
7. Appendices

7.1 Appendix 1 High-voltage connections

High-voltage connection terminals for current transformers:

Figure 1

Figure 2 Ø30 tap
7.2 Appendix 2 support Interface
Foot print for support for current transformer installation

Figure 3